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Abstract

The study of language acquisition involves determining how children learn the linguis-
tic phenomena of their first language. This thesis analyzes the Triggering Learning
Algorithm, which describes how children set the parameters which define the linguistic
variation seen in the syntax of natural language. This thesis describes enhancements
to an implementation of this algorithm and the results found from the implemen-
tation. This implementation allows for more careful study of the algorithm and of
its known problems. It allows us to examine in more depth the solutions which have
been proposed for these problems. The results show that the theory correctly predicts
some principles expected to be true of language acquisition. However, many of the
proposed principles are shown to make incorrect predictions about the learnability of
certain kinds of languages. This thesis discusses a second potential solution and ways
in which it can be tested as well as other ways to test the predictions of the theory.
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Chapter 1

Introduction

The problem of language acquisition is to describe how a child learns her first lan-

guage. Of course, there are many different aspects of this process and questions to be

considered, such as the sound system, word meanings, and syntactic rules. This the-

sis will analyze an algorithm for acquisition of the child’s syntactic knowledge which

describes what kinds of steps a child takes on her way to learning the adult language

and why she makes such steps.

Some of the key questions about syntax acquisition include:

(1) (i) what kind of input does the child receive

(ii) what kind of input does she actually use

(iii) what kinds of mistakes do children make and what can they tell us about

language

(iv) how long does it take a child to learn a particular phenomenon

(v) what kind of algorithm does the child use so that she will eventually arrive

at her adult language

It is a proposal for this last problem that will be analyzed in this thesis. In partic-
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ular, this thesis studies an implementation of Gibson and Wexler’s [GW94] Trigger-

ing Learning Algorithm (TLA). I will start outlining in this chapter the framework

in which the TLA is studied (Principles and Parameters). Next I will give some

background on this algorithm as well as other algorithms for language acquisition in

Chapter 2.

In Chapter 3, I will describe the previous implementation of the TLA. as well as my

enhancements to this work. Chapter 4 will describe some of the problems with the

TLA and what the results might tell us about language and its acquisition. Chapter

5 provides ideas towards future work along several lines.

1.1 Principles and Parameters

A theory of language acquisition must describe how a child learns the various parts

of language. Those pieces must be defined with respect to some linguistic theory.

For this study, we will use the framework of Principles and Parameters as described

by Chomsky [Cho81]. In addition to a lexicon, or dictionary, for a particular lan-

gauge, this theory assumes a set of principles and a finite number of parameters. The

principles are common to all human language and are therefore considered “innate”

or at least they are known prior to a very early age. The parameters define the varia-

tion among possible languages. All parameters are present in each language, but each

parameter can take on a different setting. For example, English direct objects appear

after the verb, but Japanese objects appear before the verb. The parameter which

controls this fact is the Complement-Head order parameter, which will be discussed

more later. The parameter is present in both English and Japanese, but its settings

are reversed. The setting of all the parameters will produce a set of possible sentence

patterns which will be the grammar for that language.

14



1.1.1 Principles

Since the principles are assumed to be innate, there is no learning involved. So I will

not go into depth about many of the principles. Some of the principles include X-

bar Theory, Case Theory, Theta Theory, Movement, and Binding Theory. For more

details on these, see [Cho81] and [Cho95].

1.1.2 X-bar Theory

X-bar Theory describes the hierarchical formation of sentences from phrases. X-bar

Theory unifies the structure of all phrases, whether they be a noun phrase, a verb

phrase, or any other phrase. Every phrase has a core element, or head. In a noun

phrase the head is a noun, in a verb phrase it is a verb.

X-bar theory states that every phrase must have a head. And it determines how the

phrases themselves are formed. The components of a phrase (XP), which is itself

hierarchical are the head (X0), the X-bar level (X’), the specifier (another phrase),

and the complement (yet another phrase). There exists a set of rules to which every

phrase must conform:

(2) (i) XP → YP X’ | X’ YP where YP is the specifier of the XP

(ii) X’ → X’ YP | YP X’ where YP is an adjunct to the XP

(iii) X’ → X0 YP | YP X0 where YP is the complement of the XP

These rules assume binary branching. Haegeman [Hae91] discusses the fact that if

rules must branch this way only, then the grammar is more constrained. If a child

hears an input string, she can parse it into fewer structures with binary branching

than if she were allowed to have any number of branchings. If she has fewer possible
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structures, it will be easier for her to decide among them. In this way, the acquisition

of grammar will be much faster.

The rules also allow each of the two elements on the right hand side to be ordered

in either way. This ordering is one of the ways languages can vary. Parameters

controlling this ordering for every phrase in a particular language will be discussed

below in the next section.

1.1.3 Parameters

Parameters will be assumed to take on binary values only. It is the acquisition of

these parameter settings that this thesis will cover.

An example of two parameters is given below. Here we have two parameters, Spec-

Head, and Comp-Head. These parameters determine the structure of any phrase. In

X-bar theory, a phrase, or XP, is composed of two parts in any order: a specifier

and an X-bar level. The X-bar level, in turn, is composed of a head (X or X0)

and a complement in any order. The Spec-Head parameter determines whether the

specifier or the X’ appears first, and the Comp-Head parameter determines whether

the complement or the head appears first. These settings apply to all phrases whether

they be NPs, VPs, PPs, or any others. In the tree structure below, we have the

parameters set as Spec-first and Comp-final (= Head-initial).

(3) XP

/\

/ \

Spec X’

/\

/ \

X0 Comp
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Note that these are the settings for English. If the subject is the specifier of the verb

phrase and the direct object is the complement, then we get the Subject-Verb-Object

(SVO) pattern that we see in English. These two parameters determine the basic

word order in any language.

We do not know the complete set of parameters, but we do believe that they should

produce the general set of sentence patterns we should find for a particular language.

They may alter the word order of a sentence by movement in some constrained way,

determine where certain elements are place, or omit certain elements of a sentence.

1.2 Acquisition of a P & P grammar

In the Principles and Parameters framework, we have three components for the gram-

mar of each language:

(4) (i) Principles

(ii) Parameters

(iii) Lexicon

We have stated that the principles are innate. Therefore there is no learning necessary

for them. This thesis will not cover acquisition of the lexicon although there may very

well be lexical parameters to learn.

This research covers the problem of acquisition of parameter settings for natural

languages. Every child is believed to be able to learn any given language. This means

that no matter what her genetic endowment is, she can acquire any possible natural
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language (given assumptions that she will hear proper input). She is not pre-wired

for any particular language.

How, then, can the process of learning the correct parameter settings be described?

If a child starts in an initial state (setting of parameters), how does she eventually

reach her final state?

The parameters we are talking about determine word order for a particular language.

From these settings, we can derive the set of sentence patterns for that language. Pre-

sumably these sentence patterns are what the child pays attention to in determining

parameter settings.

The next chapter will describe a few kinds of algorithms proposed to capture this

process. The Gibson and Wexler (1994) model, which is the on being investigated

here, will be discussed thoroughly.

18



Chapter 2

Theories of Parameter Acquisition

As already mentioned, it is possible to propose many kinds of algorithms in order to

describe the acquisition of parameter settings. Algorithms can differ in what they

assume a learner is paying attention to in the language she hears. All do assume no

negative evidence; the child does not learn from grammatical correction.

This chapter will give background on the TLA as well as a few other models of

parameter-setting. For more of a description and analysis of the first three models,

see Broihier [Bro97].

2.1 Triggering Algorithms

This thesis studies a type of algorithm involving triggers. Triggers are sentences that

the learner cannot parse and which cause her to change her grammar hypothesis to

a new hypothesis (setting of parameters). A triggering algorithm will describe how

and when such a change can be made so that the learner will eventually arrive at her

target adult language.
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2.1.1 The TLA

Gibson and Wexler’s [GW94] Triggering Learning Algorithm (TLA) proposes that

the child changes parameter values one at a time when presented with a trigger. The

TLA is stated in Gibson and Wexler [GW94] as follows:

(5) Given an initial set of values for n binary-valued parameters, the learner at-

tempts to syntactically analyze an incoming sentence S. If S can be successfully

analyzed, then the learner’s hypothesis regarding the target grammar is left un-

changed. If, however, the learner cannot analyze S, then the learner uniformly

selects a parameter P (with probability 1/n for each parameter), changes the

value associated with P, and tries to reprocess S using the new parameter value.

If analysis is now possible, then the parameter value change is adopted. Other-

wise, the original parameter value is retained.

The two constraints contained in this algorithm are the Single Value Constraint, given

in (6i) and the Greediness Constraint, given in (6ii).

(6) (i) The Single Value Constraint

Only one parameter at a time may be changed between hypotheses.

(ii) The Greediness Constraint

The learner adopt a new hypothesis only if it allows her to analyze input

that was not previously analyzable.

Niyogi and Berwick [NB96a] classified the TLA as having the properties shown below

in (7):

(7) (i) a local hill-climbing search algorithm

(ii) a uniform sentence distribution over unembedded (degree-0) sentences

20



(iii) no noise

(iv) a 3-way parameterization using mostly X-bar theory

(v) memoryless (non-batch) learning

Figure 2-1 below shows languages as neighboring (overlapping) sets. We will assume

L1 is the target. If the learner assumes an L2 grammar, she will transition to L1

if she hears input from the non-overlapping area in L1. If she hears input from

the intersection of L1 and L2, she will remain in L2. If the learner assumes an L3

grammar, she will transition to L2 if she hears input from L1 which is not in L3 and

is in L2.

L2

L3

L1

Figure 2-1: A set diagram of the TLA. Two of languages (L1-L3) are shown as
overlapping if they are neighbors (one parameter value away) and have some sentence
patterns in common.

2.1.2 Local Maxima in the TLA

In their paper, Gibson and Wexler studied a small, 3-parameter space. The three

parameters included Spec-Head, Comp-Head, and V2. The Spec-Head and Comp-

Head parameters have already been discussed. The V2 (or verb-second) parameter,

if set, requires the finite verb to move from its base position to the second position

in root declarative clauses.
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In examining this three-parameter space, Gibson and Wexler found that there were

some targets which were not learnable if the learner started out from a particular

state or set of states. If there was no trigger to pull the learner out of a particular

non-target state, this state was called a local maximum. If the learner ever reaches

such a state, there is no way she can ever reach the target language.

In the three-parameter space, there were three out of the eight possible targets which

had local maxima. Gibson and Wexler noticed that these three targets were all -V2

languages and the local maxima for them were all +V2 languages.

To solve the problem of local maxima, Gibson and Wexler proposed that the learner

must start with some parameters having a default initial value. For this space, that

would mean that the V2 parameter was initially set to -V2, while the other parameters

could be set to any value initially. Since no +V2 languages had local maxima, these

could be learned no matter what the initial state. For -V2 languages, the learner

would not be allowed to transition to a +V2 language for a certain time, t.

However, Niyogi and Berwick [NB96a] and [NB96b] noticed that for Gibson and

Wexler’s three-parameter space, it was still possible, though not guaranteed, for the

learner to transition to a local maximum even if she started in a -V2 state. This

means that there was still some chance that the learner would not converge on her

target language. Safe states are defined as those languages from which it is not at all

possible to arrive in a local maximum.

The example Niyogi and Berwick gave is shown below in Figure 2-2. Here, the target

is a Spec-first, Comp-final, -V2 language such as English. The arcs represent possible

transitions, with their probabilities, as will be discussed later. Any state with no

outgoing arcs is called an absorbing state. Of course, the target will always be an

absorbing state. When the learner enters the target, she can never leave it because

the input she hears will be only from the target. Any absorbing state which is not the

target language is a local maximum. Also, any state which has outgoing arcs only to
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local maxima is also a local maximum. So in the diagram with state 5 as the target,

state 2 is an absorbing state and maximum and state 4 is a maximum also.

target: 5

5

2

3

8

4

[0 1 0]

1

7

6

[1 0 1]

[0 1 1]

[0  0  0]

[1 1 0]

[spec 1st, comp final, –V2]

sink
[1 1 1]

[0 0 1]

[1 0 0]

31/36

11/12

1/12
1/12

1
1/2

1/6

1/3

2/3

1/18

5/6

1/6

1

8/9

1/12

5/18

sink

1/18 1/36

Figure 2-2: Niyogi and Berwick’s [NB96a] Figure 1 with state 5 as the target. Arcs
can exist from state to another only if there is data to drive the learner to change
states. Numbers on the arcs are the transition probabilities.

Note that this diagram shows for other states that it is possible though not guaranteed

to transition to a local maximum from a -V2 language. The two cases here are from

state 3 to state 4 and from state 1 to state 2. These transitions are not the only ones,

but they are possible, leaving the learner in a state from which she can never learn

her target adult language.
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2.1.3 Triggering as a Markov Process

Niyogi and Berwick [NB96a] describe how to model finite parameter learning as a

Markov chain. A Markov transition matrix A is a matrix with the following two

properties [Str93]:

(8) (i) Every entry of A is nonnegative.

(ii) Every column of A adds to 1.

Niyogi and Berwick have every row of A adding to 1 instead for ease of understanding.

For each target grammar in a space, we can build a transition matrix that tells the

probability of transitioning from one state to another. The entry (i,j) is the probability

of transitioning from state i to state j for the given target.

Niyogi and Berwick show how to determine the probability of transitioning from

one state to another. The probability of flipping a single parameter value chosen at

random is 1/n for n parameters. And the probability of hearing an input which will

cause this flip is the sum of the probability of hearing a string sj over all strings sj in

the target language which are not in the language of state s but are in the language

of state k. Thus, the probability of a transition from state s to state k can be stated

as:

P [s → k] =
∑

sj∈Lt,sj 6∈Ls,sj∈Lk

(1/n)P (sj)

Of course, we are interested in only transitions between neighboring states. A neigh-

boring state of state s in this model is one which differs from s in one parameter

setting only. Since the formula above gives only the probability of transitioning out

of a current state, we must also find the probability of remaining in the current state.
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All probabilities must add to 1, so the probability of staying in a state is

P [s → s] = 1 −
∑

k a neighboring state of s

P [s → k]

If we assume an even distribution for the sentence patterns, then we have P (sj) =

1/|Lt|, where |Lt| is the number of patterns in the target language.

Given the transition matrix, we can determine local maxima for a particular target

language. The matrix Ak gives the probability of being in a certain state after taking

k steps. As we take k to infinity, Ak will converge to a steady state. From this steady

state, we will be able to read off the local maxima and safe states. Recall that a

safe state is one that from which the learner will reach the target with probability 1.

Then the safe states will be those rows which contain the value 1 in the column of

the target language. The local maxima are those from which the learner cannot reach

the target; their rows will have a value of 0 in the column of the target language. The

non-safe states will be all the rest; their rows have a value between 0 and 1, exclusive,

in the column of the target. That value will give the probability of reaching the target

even though there will not necessarily be convergence to the target.

Modelling the TLA as a Markov chain allows us to retrieve more information about

the process. We can also use the transition matrix to compute convergence time for a

target. Of course, since states with maxima do not necessarily converge to the target,

we can measure convergence time on only those states which have no local maxima.

Niyogi and Berwick give the following theorem from Isaacson and Madsen [IM91]:

Theorem 1 Let T be an n×n transition matrix with n linearly independent left eigen-

vectors x1, . . .xn corresponding to eigenvalues λ1, . . . , λn. Let π0 (an n-dimensional

row vector) represent the starting probability of being in each state of the chain and π

(another n-dimensional row vector) be the limiting probability of being in each state.

Then after k transitions, the probability of being in each state π0T
k can be described
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by

‖ π0T
k − π ‖=‖

n∑

i=2

λk
i π0yixi ‖≤ max

2≤i≤n
{|λi|

k
n∑

i=2

‖ π0yixi ‖}

where the yi’s are the right eigenvectors of T and the norm is the standard Euclidean

norm.

If we find that it takes an extraordinarily large number of transitions to end up in the

target state with a probability of one, then we can say that this is not a reasonable

theory of parameter setting.

2.2 Cue-based Algorithms

Dresher and Kaye [DK90] proposed an algorithm for setting phonological parameters.

Their kind of algorithm is referred to as a cue-based approach. This kind of algorithm

does not assume that the learner is reasoning about settings of parameters. Rather,

the inference tools are pre-compiled, or hard-wired into Universal Grammar. The

learner is provided with cues which tell her what patterns to look for in the input and

what conclusions about a parameter setting to make when these patterns are found.

Every parameter or parameter setting is associated with a particular cue. Every

parameter has a default value. There may be an ordering about which parameters

are set; this will represent dependencies among parameters. If a parameter value is

set to a new value, all parameters which depend on it must be reset to their default

values.

We saw that cues were stated as one per parameter or parameter setting. We know

that parameters can interact and they will moreso with larger spaces. With large

numbers of parameters, it seems necessary to define multiple cues for each parameter

setting, depending on the settings of other parameters. Even with the partial ordering,

it is highly unlikely that we can get away with one cue per parameter setting while
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ignoring the other parameter settings.

Unlike the TLA, this cue-based algorithm requires the memory of previous input

sentences. The learner needs to know whether she has seen a particular pattern or

set of patterns in the input before she can set a certain parameter value. How far

back must her memory go and is that reasonable? Certainly holding a few input

sentences in memory does not sound so unreasonable. But it is probably necessary

to hold many more than that if certain cues are defined so that the learner needs

to have heard all the different sentence patterns in a certain set. If that is the case,

the learner could need a large memory for so many previously heard sentences. It

seems rather unlikely that a child would be able to have such a large memory to hold

enough previous utterances.

2.3 Structural Triggers

Fodor [Fod97] proposed the Structural Triggers Learner (STL) algorithm. In this

algorithm, the learner is assumed to use only a parser, which she needs anyway.

Upon receiving an input sentence, the learner superparses it, or parses it with all

possible grammar which come from varying the unset parameters. On examination

of the grammars which can parse the input, the learner can attempt to set parameters.

If all grammars which parse the input sentence have parameter P set to value V, then

the learner adopts that parameter setting. Each time a parameter is set, the number

of possible grammars for the learner to use shrinks until eventually all parameters are

set.

Bertolo et al. [BBGW97] have shown that the STL is really an instance of a cue-based

learner. Instead of having pre-compiled cues, the STL derives its cues as the result

of superparsing.

This kind of superparsing may require large amounts of memory in some cases. If
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there are n binary parameters, there are 2n grammars when the learner begins with

no parameters set. For each input sentence, the learner must try to produce as many

parses as there are grammars. With 2n grammars, this seems like an awfully large

amount of computation and memory to store all output parses to be compared.

2.4 A Variational Theory

Yang [Yan99] proposed a rather different approach to parameter setting. The models

discussed above were transformational models; the learner moves from one grammar

to another. Yang proposes that the child has more than one grammar in competition

at a time.

Since the child has a population of grammars, we need to know how she chooses a

particular grammar to use and how she eventually chooses the one identical to the

target adult grammar. Yang suggests that each grammar is associated with a proba-

bility, or weight. The probability value for each grammar may be adjusted depending

on the input. It can be either increased (rewarded) or decreased (punished). For an

input sentence, a grammar is chosen with the probability currently assigned to it. If

the grammar chosen can analyze the input sentence, the grammar is rewarded and

the other grammars are punished. If the grammar chosen is not able to parse the

sentence, then it is punished, and all other grammars are rewarded.

Yang shows that this algorithm is guaranteed to converge to the target adult grammar

and that it makes correct predictions about the timing of certain linguistic phenomena

of child language acquisition. Eventually a single grammar will have a high enough

probability associated with it that the others will have to die off.

This algorithm requires the learner to store a probability value with each possible

grammar. Again there are 2n grammars for n binary parameters. The initial proba-

bilities associated with each grammar will be quite low for larger values of n.
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Chapter 3

Implementation

The TLA has been implemented in Common Lisp in order to study the space and its

problems more carefully. Gibson and Wexler’s proposed solutions to the local maxima

problem can now be investigated more thoroughly. It will be possible to determine

how important this problem could be in a more realistic space with a larger number of

parameters. This chapter describes an original implementation and the enhancements

that this research project has made to the system.

3.1 Original system

Stefano Bertolo has implemented a system which is useful in studying the TLA at

a greater depth. Instead of using just the three parameters in Gibson and Wexler,

Bertolo adds nine more parameters and generates the larger space of 12 binary param-

eters. His program generates sentence patterns for each of the 212 (= 4096) settings

of the parameters. From these sets of sentence patterns, it searches for the set of local

maxima and the set of safe states for each target.
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3.1.1 Parameter set

The set of 12 parameters used in this system is listed below in Table 3.1 with the

meanings of their values:

Table 3.1: Parameters and setting values

Parameter name Value 0 Value 1
Spec-Head Spec-final Spec-first
Comp-Head Comp-first (Head-final) Comp-final (Head-initial)
C C-final C-first
Neg placement Neg in Spec Neg in Head
V-to-A No movement Movement
V-to-T No movement Movement
Subj Raising No movement Movement
Scrambling No scrambling Pron scrambling
Non-pron Obj Scr No scrambling Opt Non-pron Obj Scr
Oblig Pron Scr Not oblig (= Opt) Oblig Pron Scr
Long Scrambling No long scrambling Long Scr
V2 no V2 movement V2 movement

The first three are basic word order parameters that are needed for all phrases while

the rest involve movement. The only exception is Neg placement, which does not

involve movement, but it is not necessary for the formation of all kinds of sentence

patterns the way the Spec-Head, Comp-Head, and C-placement parameters are.

A note needs to be made about the scrambling parameters (8-11). Parameter 8 is

the general scrambling parameter, which allows object pronoun scrambling. Only

if scrambling is allowed (by parameter 8) are other types of scrambling allowed, as

described by parameters 9-11. So the settings of parameters 9-11 are ignored if

parameter 8 is set to 0 (no kind of scrambling allowed). So we have four parameters

which could then be set 16 different ways. If we have a scrambling language, we have

all 8 possible settings producing different languages. But if we have parameter 8 set to

0, we have only one language. So we really have only 9 of the sixteen different possible

languages. So instead of 4096 (= 212) possible languages, we have a maximum of only
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9/16 of that, or 2304, possible different languages.

3.1.2 X-bar structures

The program creates basic sentence patterns from X-bar templates and from the

settings of the three word order parameters. Then it sequentially applies to these

X-bar structures the operations of the settings of each of the other 9 parameters.

Finally, the structure is removed in order to find the set of sentence patterns. This

makes sense, of course, since children do not receive input sentences with structures;

rather they hear simply an input string of words and try to parse it themselves.

The X-bar templates include such categories as CP, TP, AP, NegP, Aux, VP, Adv,

Obj, Obj1, Obj2, Prep, E-sentence, and Comp. These allow for constructions op-

tionally containing auxiliaries, adverbs, and negation. Verb phrases may contain no

objects, one object, two objects, or an object with a prepositional phrase. Both

declarative sentences and imperative sentences are allowed by declaring that the root

of the sentence can be either CP or VP.

3.1.3 Formation of the space

The formation of the parameter space takes place with sequential application of each

of the parameter functions. The initial 3-parameter space is created first. The infor-

mation of the list of sentence patterns for a language (parameter setting) is written to

a file for each language. Then the parameters are applied sequentially. The applica-

tion of each parameter takes a file from the previous space, extends it with the 0 and

1 settings and writes the sentence patterns corresponding to each of these settings to

each new file.

Next, then each state’s possible sentence patterns are flattened. If more than one
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state produces exactly the same set of surface patterns, these states are grouped

together to form a cluster. The whole 12-parameter space, with sentence patterns

encoded, is stored to a separate Lisp file.

Finally, a Huffman code is established for the space, and the sentence patterns are

converted to decimal numbers from this Huffman code. Storing the sentences as

decimal numbers allows for faster processing in the next stages. It is easier to compare

numbers than lists of strings. The Huffman code information is stored in a Lisp file.

In this 12 parameter space, there are 212 possible languages from the various settings

of the parameters. However, there are not 4096 different sets of sentence patterns

produced from this system. In fact, there are only 1136 clusters with distinct sets of

sentence patterns. Note that this 1136 is much smaller than the number we would

expect even when we count as one the states having parameters 1-7 and 12 set iden-

tically, parameter 8 set to 0, and parameters 9-11 set to any value. That value would

be 4096 * 9/16 = 2304.

3.1.4 Local maxima search

From these states and their corresponding set of sentence patterns, triggers can be

determined when a target state is known. Then local maxima and safe states can

be determined by comparing sets of surface patterns of neighboring states. These

clusters with their maxima and safe states are output to files.

The neighboring states were calculated by finding the states that were within a certain

distance away. The distance to be studied could be set to any value. Gibson and

Wexler required that the distance not be more than 1. The setting of this value would

allow other options to be explored, but this was not done here.

The algorithm Bertolo used to find the maxima was also used to find the safe states.

Given two sets, set1 and set2, the routine determines which of the states in set2 have
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no path to at least one state in set1. The algorithm can be stated generally as follows:

(9) (i) Set1 := Lt

(ii) R = set of states in Set2 which neighboring states in Set1 that do have

transitions to an element in Set1

(iii) Set1 := Set1 U R

(iv) Set2 := Set2 - R

(v) go to step (ii) if R is not the null set

(vi) OutSet := Set2

For the maxima search, set1 starts off containing only the target language(s). And

set2 contains all the other languages. Then the maxima will be those that have no

path to any of the target languages.

For the safe state search, set1 starts as containing the maxima just found and set2

contains all languages except the maxima and the target(s). Safe states are those

which have no path to any maxima, so this algorithm does the trick. After this

algorithm runs, the maxima are simply OutSet (= Set2). But the set of safe states

is the union of the OutSet with the set of targets (since these are always safe).

3.1.5 Running time

The approximate time which Bertolo had reported for the running of the algorithm

on a Sparc 20 is as follows:

(10) (i) 3 hours to create the space from scratch for the 12 parameters

(ii) 30 mins per language (20 days total) to search for maxima and safe states
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3.2 Enhancements to the system

This section will describe the enhancements that were made to the system for this

research project. Many of the enhancements were made in order to make the program

more useful in general cases. If it becomes more flexible, then it allows more apects

of the TLA to be studied. There were two main enhancements made to allow the

program to be more general:

• allow the users to restrict the parameter space from the set of twelve parameters

by allowing them to select the parameters they are interested in studying

• allow for easy addition of new parameters so that the space can be expanded

also

A third improvement made was to decrease the time of the maxima search. Recall

that Bertolo’s implementation required about 30 minutes to find the maxima and

safe states for each target language. I rewrote the algorithm for the search for local

maxima more efficiently. This running time for the maxima search for each language

was significantly reduced even though the total time for all languages is still quite

long.

The last major enhancement was to model the triggering process as a Markov chain.

We have already described how maxima and safe states can be found from this rep-

resentation. This method has been implemented as has the method for finding con-

vergence times given a Markov chain.

3.2.1 Selection of parameter space

We decided to allow for the selection of a set of parameters to be studied. Gibson

and Wexler proposed that one solution to the problem of local maxima might be that

34



the parameter space was not correct. Certainly their three-parameter space was too

small to be condidered realistic. Perhaps the correct parameter space would not have

the problem of local maxima, assuming the correct parameter space could even be

found. If the user can choose the parameter space to be explored, then he can run

the program on each different space he chooses and examine the results to find which

targets in which spaces have local maxima.

The first enhancement made to the Bertolo system was a utility for selection of

parameters to study. As mentioned previously, the first three word order parameters

were used to create a small space and then the rest of the parameters were applied

sequentially, creating larger and larger spaces until the complete 12-parameter space

was created.

As before, the three word order parameters are required to start with. The space for

these parameters is created and then expanded depending on what other parameters

may be selected. Therefore, the minimum space to be explored is this 3-parameter

space.

My selection routine takes as input the list of the functions that do the application

of each of the parameters. This list is broken down into four groups according to

the kinds of parameter. One set corresponds to the scrambling parameters. Another

corresponds to the parameters that most easily apply to surface forms, as will be

discussed below. Yet another is the set that will apply just before the surface param-

eters do, the last stage of application of structural parameters. The last set contains

all the rest that can be applied sequentially.

Global variables are used to define the sets of possible scrambling parameters, possible

final structural parameters, and possible surface parameters. The union operation is

used on each of these possible sets and the list of selected parameters in order to

separate the selected parameters into the appropriate sets.

Once the 3-parameter space has been created from the word-order parameters, the

35



set of general parameters are applied sequentially, increasing the space each time.

Next, it is determined whether the main scrambling parameter was contained in that

general set. If not, no other scrambling parameter is applied, even if it had been

selected. If the main scrambling parameter was selected, then the space is increased

by applying the other scrambling parameters. Once the scrambling parameters have

been applied (if necessary), then the final structural parameters (in this case, just V2)

can be applied. Finally the X-bar structure is removed from the sentence patterns

and the space consists of flat sentence patterns for each target. Then the last set of

parameters (if it contains any) can be applied since they apply most easily to surface

patterns.

After this application, the space can be compacted as before and the rest of the

process of looking for maxima and safe states can continue.

3.2.2 Addition of parameters

Now that it is possible to select sets of parameters instead of having to study exactly

the original twelve, we want to make it easy to add new parameters so that more spaces

can be studied. This addition could be important if there was another parameter

thought to be important or helpful in distinguishing language patterns.

In order to add a new parameter, it is necessary for the user to define a function that

describes how each setting of the parameter may or may not alter the structure of the

sentence pattern. It is also necessary to determine which type of parameter this new

one is. It may be a parameter of the usual type, it may be a scrambling parameter,

or it may be one defined to apply to surface patterns. If the new parameter is either a

scrambling parameter or a surface parameter, then its function name must be added

to the list of parameters for the respective global variable.

We have added several parameters that can be studied although no space including
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them has been studied yet. The previous system generated only simple sentence

patterns, whether they be declarative or imperative. But one might also want to

include questions since children must hear many kinds of questions. We decided to

add parameters for questions involving subject-auxiliary inversion and Wh-movement

since these can be crucial to the formation of questions.

We decided that it was easier to define a subject-auxiliary operation in terms of a

surface pattern than to define it to produce the whole structure showing the proper

movement. The function for the Subj-Aux inversion parameter simply takes a set of

sentence patterns and searches for any pattern containing a Subj0 followed by Aux0.

It then adds to the set of sentence patterns another sentence pattern identical to the

first except with Aux0 followed by Subj0 instead of the original non-inverted pattern

with Subj0 followed by Aux0.

For the Wh-movement operation, this was easier to implement with the complete X-

bar structure for each sentence pattern. Therefore this was not a surface parameter;

rather it was the general type of parameter. This operation examined each sentence

pattern in the target language and added Wh-questions that could be formed from

it. This parameter function substituted a Wh in for any of the following categories:

Subj0 P-Obj0 Obj0 P-Obj1-0 Obj1-0 Obj2-0 Adjunct0 Adv. Then each setting of

the parameter was considered. For the setting of 0, the sentence patterns with Wh

substituted were left unchanged because Wh-words stay in situ for these languages.

For the setting of 1, the Wh-word is moved to Spec-CP and a trace is left because

Wh-words are required to move in these languages.

Another new parameter thought to be useful is pro-drop. If set, this parameter allows

the dropping of personal pronouns in language. Most commonly it is the subject since

pronouns occur in subject position most often. As an example of the variation allowed

by this parameter, we look at the differences among a few languages. English does

not allow pronouns to be dropped in general, but languages like Italian drops them

quite freely, and Chinese allows them to be dropped only in certain cases. We know
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that there is a long stage in child language that English-speaking children often omit

subjects, first noted by Bloom [Blo70].

Most commonly it is the subject since pronouns occur in subject position most often.

We therefore decided to implement this parameter as simply a subject drop param-

eter rather than a general pro-drop parameter This parameter describes an optional

dropping of the subject if set to 1. No dropping is allowed if set to 0. The imple-

mentation of this parameter was also most easily done from the surface form. If a

sentence was found containing a subject NP, then another sentence was added to the

list of sentence patterns for that particular language with the subject omitted.

Since we have shown that it is easy to add these three new parameters, it would

also be easy to add others. One first needs to decide if a new parameter is a special

type (scrambling, surface, or final structural). If so, its function needs to be added

to the appropriate global list of these parameters. The definition of the parameter

application function needs to define the affect of each of the 0 and 1 settings.

3.2.3 Rewriting of maxima search

Since most of the running time of Bertolo’s program came from the maxima search,

I decided to rewrite it to be more efficient. From 3.1.4, it can be seen that Bertolo’s

implementation looked back from every non-maximum for states that could transition

to it. This is quite a bit of computation every time even though the space to search

through became smaller each time.

I decided to determine the set of transitions for once and for all at the start of maxima

and safe state search. Then I could use this information to find the set of maxima and

the set of safe states. Otherwise, my implementation was quite similar to Bertolo’s but

the complete set of possible transitions are computed only once per target language.

Given that the safe state is a non-maxima, it finds all the states that lead to it in this
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set of transition pairs. Just as Bertolo’s did, the set of non-maxima was increased in

this way until it stopped growing. And the search for safe states was done similarly

to Bertolo’s also.

When the search for local maxima was written this new way, it computed all the pos-

sible transition pairs first, instead of for each iteration through the search recursion.

The complete set of transition pairs will be useful for the improvements described

next. Computing transitions only once significantly cut down the running time of

this algorithm even though this is still the majority of the computation involved in

the search. Where this part of the program used to take about 30 minutes per 12-

parameter language, it now takes only about 8 minutes per language, on average.

Graph 3-1 below shows the time for the new algorithm as a function of the number

of parameters. The time can be seen to be increasing exponentially since the size of

the space is also increasing exponentially.
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Figure 3-1: Time for rewritten local maxima search as a function of the number of
parameters.
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3.2.4 Markov method for maxima and safe states

We also decided to model the TLA as a Markov process as described in section 2.1.3.

This allows us to find local maxima and safe states for any target language.

In order to use this method, we need transition probabilities between every two states

with respect to a given target. The routine mentioned in the section above required

finding the set of all transition pairs with respect to a certain target. I extended

this routine so that along with all such transition pairs, it would return the proper

probability values necessary for the Markov matrix. With each pair of languages

which have a transition from the first to the second, it returns the number of triggers

that would cause such a transition and the number of sentence patterns in the target

grammar. Recall that, for an even distribution among input sentences, the probability

of transition can be stated as

1

n

|triggeringsents|

|Lt|
.

The routine to find transition pairs worked only to find a transition from one state

to another different state. So the probability of remaining in one state was not

calculated. I wrote another routine to take the set of transition pairs and find this

probability. It added the probabilities of leaving a certain state and subtracted this

from 1 in order to find the probability of staying in that state. So now there was a

full set of transitions and their probabilities.

We decided to perform the matrix manipulations in Matlab. However, the data

needed to be retrieved from the parameter space, which was all represented in Lisp.

I wrote yet another version of the maxima search routine in Lisp to calculate the

transition probabilities and output a file that could be run in Matlab. This file

contained the definition of the Markov transition matrix and a call to the routine

which finds the maxima and safe states from the transition matrix.
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In the first attempt to define the matrix, I had Lisp calculate each row and then write

it out to a Matlab (.m) file. When I loaded the Matlab file, and ran the maxima and

safe state search function, it worked fine for small for small values of parameters,

but Matlab quickly ran out of memory for the 12-parameter space. This is because

a matrix for 12 parameters has dimensions of 4096x4096. It is even worse than just

this because this matrix has to be raised to a higher power until it converges to a

steady state matrix so there is multiplication of two 4096x4096 matrices. In order to

solve this problem, I needed to represent the matrices as sparse matrices. This was

possible because most entries of these matrices are 0 since there are few transitions

between states. For a space of n parameters, a particular state can transition to at

most n states since neighboring states are those that are 1 parameter setting away.

Now the Lisp routine writes out a Matlab file containing a definition of a sparse matrix

containing all zeros initially. Then each transition probability is filled in separately.

Finally, the Matlab file contains a call to the function to find the maxima and safe

states.

The algorithm for finding the maxima and safe states described by Niyogi and Berwick

was stated in section 2.1.3 above. In implementing it for this space, I had to make

minor adjustments to accommodate the system here. The first part of the algorithm

involved multiplying the matrix by itself until a steady state was reached. In my

implementation, I repeatedly squared the matrix until each element was within a

certain difference range from the previous matrix. Here, I used the value of .0001 for

a test of convergence.

Recall that if a language was a maximum for a particular target, its entry in the target

column would be zero. The difference I ran into for this is that we have clusters of

targets in this system. The languages in this cluster are all targets, so there is no

single target column to examine in the steady state matrix. My implementation

summed the entries for that row in all the target columns. If that sum was 0 (or

actually < .0001), then the language of that row was determined to be a maximum.
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The set of maxima were collected in an array and output from the maxima function.

Similarly, the cluster problem arose when trying to find the safe states from the steady

state matrix. Recall that a state was safe if it was guaranteed to end up in the target

state. In Niyogi and Berwick’s description of the Markov model, this meant that

the entry for the state’s row in the target column had to have a value of 1. Again,

if we have multiple equivalent languages in a cluster, we have no single column to

examine. Of course, we cannot even examine each entry for a value of 1. Instead, all

the entries in the target columns for that state’s row must add to a value of 1. My

function looped through the array of target languages and summed the values in their

entry for each language row. If that sum for each row was 1 (or rather the difference

between 1 and that sum was < .0001), then the state was considered safe. An array

of all the safe states was output from the safe state function.

Of course, the states that are not maxima or safe states are considered non-safe states.

But these were not specifically calculated, so they were not output anywhere.

The maxima and safe states were output to a file for each target language. The

format for this file was the same as Bertolo’s format. It was a Lisp file including

the target cluster in binary notation and the lists of the maxima and safe states in

decimal notation. This file was formatted and output from Matlab at the end of this

calculation. These files were output in Lisp as before so that they could be used for

calculations using this information which will be discussed later.

The time for running this part of the program is shown below.

(11) (i) 8 minutes in Lisp to create each Matlab file

(ii) 12 minutes in Matlab to run a 12-parameter file

The total time of about 20 minutes per cluster is more than the 8 minutes of my

rewritten Lisp maxima search. The majority of the time in Lisp is spent finding all
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the transition pairs. This was necessary for the Lisp implementation of the local

maxima search as well as for the output of a Matlab file. Then of course it take quite

a bit of time to write out all the transitions to a Matlab file.

Although this total time seems large, the representation as a Markov model allows us

to find more information about the space. Specifically, it allows us to find convergence

times, which will be discussed in the next section.

3.2.5 Markov model for convergence times

Given the transition Markov matrix from before, we can now compute the convergence

times for a matrix. The formula in Theorem 1 is repeated here. We will not used the

term to the right of the ≤ sign.

‖ π0T
k − π ‖=‖

n∑

i=2

λk
i π0yixi ‖≤ max

2≤i≤n
{|λi|

k
n∑

i=2

‖ π0yixi ‖}

The problem is to find the value of k which allows for convergence. The probability

of convergence must be (close to) the value of 1.

There are two different ways to implement this formula. The first is to simply use

the π0T
k term. The second is to use the summation term just to the right side of the

= sign.

For the first way, π0 was set to a row vector of length 2n of values 1/2n, where n is

the number of parameters in the space. Then the transition matrix A was raised to

increasing values of k until the entries in the columns of the target languages of π0T
k

summed to a value within a certain distance from 1. With this implementation, the

multiplication of T by itself caused Matlab to run out of memory sometimes. This

happened only when the number of parameters was high, as for the 12-parameter
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space. Even then, this did not happen for every matrix.

The second way to use this formula was used for the final implementation. This

implementation does not multiply matrices. It does not even need to know which

are the target languages. Let us see why. The left hand side of the equation takes

the difference between π0T
k and π, which is the final probability of being in each

state. We cannot calculate what π is when we have clusters with more than one

target language. But we do know that in the limit, it is of course the same as π0T
k.

Therefore the difference will be a row vector of all zeroes, and its norm will be zero.

Thus we can take increasing values of k until the norm of the summation on the

right hand side is also within a certain range from zero. At that point we have

found the value for k, the number of steps to convergence. Matlab calculated π0, the

left eigenvalues and eigenvectors, and the right eigenvectors once since those did not

depend on the value of k. Then value for k was increased and the sum and norm

were calculated and tested to be within a certain distance from the value 1. When

this norm was close enough to 1, the value of k was returned as the answer to the

number of steps to convergence.
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Chapter 4

A Study of the Parameter Space

This chapter describes what we have learned from the parameter space generated

by this program. We will give settings for attested natural languages which will be

used in verification of the algorithm’s predictions. Next we will examine how bad the

problem of local maxima really is in this 12-parameter space. We will also test some

possible solutions or explanations. Finally, we will examine the convergence times for

these larger spaces for plausibility.

4.1 Parameter Settings in actual languages

Table 4.1 below shows settings of each of the twelve original parameters for a few

different languages. These settings were worked out by Anjum Saleemi. Of course

some settings are questionable, but they may not always make a difference because

languages with opposite settings for a particular parameter may sometimes cluster

together. Note that when there was no scrambling at all in a language, parameter 8

was of course set to 0, and so were parameters 9-11 since we cannot really determine

their settings.
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Table 4.1: Parameter settings for various languages

Language S-H C-H C Ng VA VT SR Scr NPSc OPSc LDSc V2
Arabic 1 1 1 ? 1 1 0 ? ? ? ? 0
Dutch 1 0 1 0 1 1 1 1 1 1 0 1
English 1 1 1 1 0 0 1 0 0 0 0 0
French 1 1 1 1 1 1 1 0 0 0 0 0
German 1 0 1 0 1 1 1 1 1 1 1 1
Hindi 1 0 1 1 1 1 1 1 1 0 1 0
Icelandic 1 1 1 1 1 1 1 1 1 1 ? 1
Irish 1 1 1 ? ? 1 0 0 0 0 0 0
Italian 1 1 1 1 1 1 1 0 0 0 0 0
Japanese 1 0 0 1 1 1 1 1 1 0 1 0
Malay 1 1 1 1 ? ? 1 0 0 0 0 0
Mandarin 1 1 0 1 ? ? 1 0 0 0 0 0
Swedish 1 1 1 1 ? 1 1 1 0 1 0 1
Tamil 1 0 ? 1 1 1 1 1 1 0 1 0

The parameter settings for these languages will be useful in testing how well the TLA

really works. We know that these languages are certainly learnable. So we must make

sure that the TLA predicts them as such.

4.2 Selection of Parameter Space

The selection of the parameter space did not make the problem of local maxima

disappear. When only Gibson and Wexler’s three parameters (Spec-head, Comp-

head, V2) were examined, there were no maxima in this space. This can be attributed

to the larger set of possible sentence patterns used in this implementation. Even in

a space of four parameters (Gibson and Wexler’s three plus C-direction), there were

no local maxima.

Since the purpose of this project was to model a more realistic parameter space, it

was necessary to select more than a few parameters to investigate. As soon as more
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parameters were selected, local maxima began to appear. They became more likely

with larger parameter sets.

4.3 Local Maxima in Many Languages

As we have already mentioned, there are 4096 languages (parameter settings), or 1136

clusters (distinct grammars), in the 12-parameter space. We need to know how many

of these have the problem of local maxima. This will help us determine how much of

a problem local maxima are for language acquisition.

The best case for the TLA is if no language in the space has the problem of local

maxima. That would mean that the child can start from any initial setting of the

parameters and eventually find her way to the target adult language. If, however, it

is the case that some languages in the space have local maxima, then the best we

can do is to find an initial state which is safe to start from for every target. If we

cannot find such a state, a solution is not obvious. Let us first see to what extent

this 12-parameter space has the problem of local maxima.

Of course, the number of local maxima can range from 0 to 4095 (since the target is

never a maximum for itself). We found that only 188 of the 4096 languages, or 86

of the 1136 clusters, had no maxima. These are listed in Appendix A. At the other

extreme, the most local maxima that a target had was 3652; there were three clusters

with this many maxima. The average number of maxima was 2276.86 over the 1136

clusters. Note that this is quite high since it means that on average, more than half

the possible states in the space for a given target are local maxima. This value is only

the average number of maxima. It does not even include the other non-safe states! It

is possible that the target is never learned from even those non-safe states.

As for the number of safe states, it can range from 1 to 4096 (again since the target

is always safe for itself). We found that all languages had at least one safe state
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other than the target. There were 20 clusters that had only one safe state besides

the target. And of course, the same 86 clusters as above had all states as safe states

since there were no maxima in any path to those targets. If we calculate the average

number of safe states over all target languages, we find that there are an average of

747.85 safe states for the 1136 clusters.

There is one interesting piece of information that we extracted from these sets of

states. The 188 languages (86 clusters) that had no maxima are learnable from any

starting state. What can we learn from examining these? These 188 languages all

had several parameter settings in common. Parameter 8 was always set to the value

of 1, parameter 9 had the value 1, parameter 10 had the value 0, and parameter 11

had the value 1. This means that these were all languages which allowed pronominal

scrambling. They also had non-pronominal object scrambling, non-obligatory (only

optional) pronominal scrambling, and long distance scrambling. Three of the attested

languages listed in table 4.1 are among these languages with no local maxima: Hindi,

Japanese, and Tamil.

What do these settings tell us? Of course, not all languages with these settings were

in this set; there would have been 256 such languages. But this does tell us that the

188 languages should always be learnable, while their non-scrambling counterparts

are not always learnable from any starting state. Perhaps this means that it is easier

to acquire these settings for the scrambling parameters than to acquire the opposite

settings.

Does it make sense that these values are easier to acquire for these four scrambling

parameters? It certainly seems to. We provide a superset argument here. Recall that

the Subset Principle ([Ber85] and[MW87]) states that if there are two grammars which

are compatible with the experience and one is a superset of the other, the learner must

start from the smaller (subset) grammar. The learner must have an initial selection

the value of the parameter that generates the smallest grammar compatible with the

data.
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A language with each of these settings will be a superset of a language with the

opposite setting for any or all of these parameters. Take a particular parameter and

vary its value assuming all other parameters have a particular setting. Let us take a

look at each of the four parameters in this way. Scrambling is optional when parameter

8 is set to 1, so both the non-scrambled form and the scrambled form are allowed in

this kind of language. So if the learner starts in the non-scrambling language, there

always exists a scrambled form to trigger her to change to the scrambling language.

But the reverse is not true. So in this way it makes sense that the scrambling language

is always learnable from any starting point, including most importantly the non-

scrambling languages.

As for the other scrambling parameters, they also have values representing optionality.

Parameter 9 is for non-pronominal object scrambling. If set to 0, there is no such

scrambling; if set to 1, this kind of scrambling is an option. So again the setting of

1 represents a superset compared to the setting 0. So starting from 0, it is possible

to be triggered to a setting of 1, but the reverse is not true. Parameter 10 is for

obligatory pronominal scrambling. If set to 0, there is no obligatory scrambling; it is

only optional. If set to 1, such scrambling is obligatory. So we see a similar superset

relation here. The setting of 0 provides a language which is a superset of the language

except with the setting of 1 for parameter 10. We can start from 1 and find our way

to 0, but not the other way around. Parameter 11 is for long distance scrambling.

If set to 0, no such scrambling is permitted. If set to 1, long distance scrambling is

optional. Again, it is possible to start with the value of 0 and reach the value of 1,

but not the opposite.

These four scrambling parameters are the only ones that are defined as having a

setting of optionality. The first three parameters are simply word order. Word order

is strictly defined to be in a certain direction. The Neg-placement parameter states

that the negation word should be placed in either the specifier or the head. There

is no option of having both placements. The four other parameters (V-to-A, V-to-

T, Subject Raising, and V2) are all movement parameters. But they are defined
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such that a setting of 0 means no movement of the appropriate element, and that

a setting of 1 means that the appropriate element must move. Since none of these

non-scrambling parameters involve optionality, there is no obvious subset/superset

relation. Therefore it is not obviously easier to move in one direction (from one

setting to the other). So it makes sense that the scrambling parameters are the only

ones with settings in common for these languages that are easy to learn because they

have no local maxima at all.

4.4 A Single Default State?

Gibson and Wexler [GW94] propose several possible solutions for the local maxima

problem. Many of these involve default values for at least some of the parameters.

If we can find one or more states that are safe for every target, then the local maxima

problem is solved. The learner can start in one of these safe states and she will be

guaranteed to learn any target language with probability 1. If there is one such safe

state, then it contains the default values for each parameter and we can say that the

child starts out with exactly this default grammar as her initial state.

If we have a set of safe states from which the learner can reach any target, then we do

not know for sure what the initial state of the learner is. If we notice that all these

safe states have certain parameter values set the same way, then we can say that these

parameters have default values but that the other parameters are not initially set to

any default value.

However, for this 12-parameter space, there was not even a single state which was

safe for every possible target. So we do not have any default settings of parameters.

This means that there is no maturational solution which would guarantee that all the

languages in this space could be learned.
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4.5 (Un)Learnable Languages?

We saw above that there was no setting of all parameters that would guarantee

learnability of all possible targets. The next logical question is the following: Is there

a setting of parameters which will allow us to learn most target languages?

Of course, we have to define what we mean by “most.” But if we can do that, we

can say that the languages that are reachable are learnable and that the rest are not.

Then maybe we can give some reason why certain languages are not learnable. We

would have to show that they are unattested in studies of natural language.

We studied this possibility by counting how many targets are learnable from a set

of languages having one or more parameters set to particular values. We varied this

number of set parameters from 1 to 12. We know that there was no setting of all

parameters that allowed all languages to be learned by the TLA, but how many are

allowed with a varying number of parameters being set? In other words, if we restrict

the initial set of states to those that have parameter P set to value V, how many

languages become learnable for various choices of P and V?

4.5.1 Setting a single parameter

The findings for setting only one parameter can be found in Appendix A in section

A.2. In summary, the number of learnable targets ranged from 188 to 312 languages

(out of 4096), with most values being 188. This value of 188 is the same as the number

of languages without any local maxima. When we looked at the 188 languages without

local maxima, we were looking at starting states without any default settings. As we

set a parameter at a time, the space becomes half as large each time. So we become

more likely to find targets that are safely learnable. The targets that are learnable

with a single parameter set a certain way are going to be a superset of the targets

that are learnable with no parameters set at all.
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In general, the set of targets that are safely learnable with n parameters set are

going to be a superset of the targets that are safely learnable with a subset of the n

parameters set. Put another way, if we have n parameters set, the new number of

learnable languages will be at least the maximum of the number of learnable languages

of each of the n choices of n-1 of the parameters set.

As we increase the number of parameters set, the set of languages to start from

decreases since we are looking at one parameter setting rather than both parameter

settings. Given this, we expect that the number of learnable languages would increase

as we start with more parameters set. So with one or more parameters set, we know

that there will be at least 188 languages that are learnable. And we saw earlier in

section ?.? that we will not reach all 4096 languages with one particular setting of all

12 parameters. So now we have a bound for the number of learnable languages with

two or more parameters set.

4.5.2 Setting all parameters

If we look all the way to the other end, we can see what happens if we set all 12

parameters to various values. There we see that the range of learnable languages is

from 204 to 1760. This is quite a range; it does tell us that certain languages are

much better initial states than others. Note that the 1760 is not even half of the

4096 languages. This means that even if the child starts with the best possible initial

setting, she still could not learn more than half of all possible targets with probability

1. Tables A.1 and A.2 showing the best and worst initial settings can be found in

Appendix A.

For the initial settings that produce the most learnable languages, we can notice that

parameters 8, 10, and 11 have consistent settings throughout the table (A.1). The

settings of these are opposite the settings from the languages with no local maxima.

They correspond to the setting that produces the subset. This is what we predicted–
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that the superset settings are easier to learn than the subset settings. The learner

must start from a subset setting and find her way to the superset setting. The

reverse cannot be achieved by the learner. Notice that parameter 9 was one of the

superset/subset parameters we looked at in the states with no maxima. Here we

expect the subset value (0) as with the other scrambling parameters. We do find a

few states with parameter 9 set to the value 1. But at least the best few intial states

all have the value 0.

Like parameter 9, the three word-order parameters (parameters 1-3) and the V2

parameter (parameter 12) are predominantly set to a certain value throughout the

table and especially at the top. These settings were not really predicted by what

we have seen so far. The only exception would be parameter 1 for spec-head order.

When only one parameter is set, we see that the setting of 0 for this parameter does

better than the setting of 1. But this is not the case for the other three parameters

here; both settings of each of these produced the same number of learnable targets.

Now take a look at the low end. The parameter settings that produce the smallest

number of learnable languages are given table A.2 in Appendix A. Note that the

settings for parameters 4, 8, 9, 10, and 11 are consistent throughout. Even parameter

1 is set to the value 1 in most cases, certainly the ones at the top of the table. In

fact the settings for parameters 8-11 are what we would expect. That is, they are the

opposite of the settings that produced the most learnable languages.

If we look again at the results for having only one parameter set, we can see why

these 6 parameters fall out as they do. They are the only ones where the results differ

between the two settings. In each case, we have the setting which produced fewer

learnable targets. The compounding of the worse setting of each of these parameters

gives us the worst starting state for all 12 parameters.
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4.5.3 Unlearnable languages

Now let us take a look at the predictions of having a good starting state. Our best

starting state predicts that 1760 of the 4096 possible languages will be learnable and

that the rest will not be. This means that 57% of all languages in this 12-parameter

space will not be learned. That seems awfully high, but let us see what this predicts.

When we looked at the settings of the 1760 languages that were predicted to be

learnable, there was no obvious pattern in parameter settings. All parameters took

on both 0 and 1 values. This is a good result for two reasons. We want both settings

of each parameter to be attested; otherwise we have no reason to have declared such a

parameter. We also want a wide variety of languages to be predicted to be learnable.

When we looked at the settings of the 2336 predicted unlearnable languages (the

complement set of the 1760 learnable languages), we did not find any obvious pattern

there either.

The next step was to determine if there were sets parameter settings that patterned

together in the unlearnable languages. If we could find any such sets, they would be

predicted to never occur together in natural language. Then these predictions could

be verified by examining parameter settings in attested natural languages.

I wrote a routine to choose sets of parameters and to test their various settings for

existence in a set of languages. When I ran this routine on the set of 2336 unlearnable

languages, there were no single parameter settings which were completely in the set

of unlearnable languages (as had been noticed before by glancing through the data).

Neither were there any two-paramater settings which were always in the unlearnable

languages. But when the routine looked at sets of settings of three or more parameters,

there were classes of languages which were completely in the set of 2336 unlearnable

languages.

54



These sets of settings could be compared with real natural languages to verify these

predictions. Many of the settings predicted to be unlearnable were not found in the

languages in table 4.1. But the setting below, which was predicted to be unlearnable

for all other parameter settings, turned out to be Swedish.

(12) (i) Subject-raising

(ii) Pronominal scrambling

(iii) No non-pronominal object scrambling

(iv) V2 movement

Of course, Swedish is learnable since it seems to be learnable by Swedish children.

Now we know that this initial setting cannot be correct since it mispredicts the

learnability of Swedish.

We found that Swedish had only 10 or 20 safe states, depending on the setting of the

V-to-A parameter which was unknown in the classification in Table 4.1. Of course

one of these states was Swedish itself. There were 3584 local maxima for Swedish

with either setting of the V-to-A parameter. It will be highly unlikely to start in

one of the 10-20 states which are safe for Swedish. When the V-to-A parameter was

set to 0, the 10 safe states all had the following settings: ?1??0?110101. When the

V-to-A parameter was set to 1, the 20 safe states had the settings: ?1????110101.

Note that these settings differ from the settings of the best initial states given in table

A.1 certainly in parameter 8 and possibly in parameters 1, 7, and 9. The best initial

states were not local maxima for Swedish, but the were non-safe states. If the learner

starts in one of these initial states, Swedish is not guaranteed unlearnable. But it

is very likely that she will not learn it because of the large size of the set of local

maxima and the very small size of safe states.

What if we use the next-best initial setting as the starting state? We ran the same

test on the set of 2396 unlearnable languages produced from that setting. Again we
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found that Swedish was predicted to be unlearnable. This was the case for the top

few of the initial settings that guaranteed the most learnable languages.

4.6 An 11-parameter space

Next we decided to examine a space with only eleven parameters. This was the same

as the 12-parameter space, but without the Spec-head parameter. This parameter’s

existence is controversial since languages with a Spec-final setting tend to be very rare.

Maybe removing this controversial parameter would make the space more realistic

after all. All languages were assumed to have a Spec-first setting.

This 11-parameter space has 2048 possible settings. Again, we can remove the equiv-

alent non-scrambling settings and expect at most (9/16)*2048 = 1152 different lan-

guages. In fact, we have only 600 clusters in this space.

Of these 2048 languages, only 112 have no local maxima. As in the 12-parameter

space, we find the same superset setting of the scrambling parameters. (Parameter

8 was always set to the value of 1, parameter 9 had the value 1, parameter 10 had

the value 0, and parameter 11 had the value 1. This means that these were all lan-

guages which allowed pronominal scrambling. They also had non-pronominal object

scrambling, non-obligatory pronominal scrambling, and long distance scrambling.) So

removing the Spec-head parameter did not make this nice prediction disappear.

Again, we found the number of learnable languages with having only one parameter

set and with having all eleven parameters set. The results for one parameter can

be found in section B.2 in Appendix B. The best settings for an initial state can

be found in table B.1. Here we see that the best setting predicted 1384 learnable

languages. Note that in this 11-parameter space, we have predicted more than half of

the possible languages to be learnable, unlike in the 12-parameter space. But we find

do find parameter setting results similar to those in the 12-parameter space. The best

56



initial settings have the subset setting of the scrambling parameters. Other settings

appear predominantly set a particular way in the best initial states, but these were

not predicted.

The worst settings can be found in tables B.2 through B.5. There were 128 languages

that predicted only 128 learnable languages. All of these worst settings again had

parameters 8-11 set the same throughout. These are the superset settings. Again,

this is a nice finding that it is hard to learn many languages if we start with a superset

setting of a parameter.

As in the 12-parameter space, I ran my routine to find contingencies between param-

eters on the unlearnable languages from the best initial states. Again Swedish was

predicted to be unlearnable. All languages with the following settings were predicted

unlearnable:

(13) (i) Subject raising

(ii) Pronominal scrambling

(iii) No non-pronominal object scrambling

(iv) Obligatory pronominal scrambling

Of course many other classes of languages were also predicted to be unlearnable

from these best initial states. The only other language consistently predicted to be

unlearnable for the top few initial states was German. German was an example of a

language with the parameter settings shown below. 1

(14) (i) Subject raising

(ii) Pronominal scrambling

(iii) Obligatory pronominal scrambling

1Icelandic may also be an example of this class of predicted unlearnable languages, but we are

not sure about the setting of the long distance scrambling parameter in Icelandic.
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(iv) Long scrambling

4.7 A population of initial grammars?

Following Yang [Yan99], we suggest the possibility of having more than one grammar

available at a time. That way it might be possible to guarantee the coverage of all the

possible parameter settings. In this framework, that would mean having more than

one initial state and following each of them through the algorithm of the TLA. Then

if at least one converged on the target grammar, the learner has reached her target

grammar. If the learner reaches a local maximum through one of the grammars,

she would still be able to recover if she reaches the target through one of the other

grammars.

We decided to test a very simple case of this possibility. Our test involved finding

two initial grammars that would cover all the possible languages in the whole 11-

or 12-parameter spaces. This would involve finding two initial settings such that the

union of the sets of languages safely learnable from each would be the complete space.

I wrote a Lisp routine which would calculate the safely learnable languages from two

initial states and determine the size of the union of these two sets. This routine was

run on every pair of states which had the sum of their numbers of learnable languages

to be more than the total number of languages.

For the 12-parameter space, this was not possible. No starting state covered even

half of the 4096 possible languages. So certainly no two would be able to cover the

whole space. It was obviously not necessary to even run the routine on this space.

In the 11-parameter space, however, we did have quite a few initial states which would

allow more than half the 2048 languages to be learned. The routine produced many

pairs of languages, but none were shown to cover the whole space. The largest set

58



of languages learnable from two initial states was of size 1526. It was created from

two initial settings which alone produced 1004 or 1186 learnable languages. So the

1526 is not that much of an improvement over the 1186. Of course this was the case

for the other pairs since their improvements over the better intial setting would have

been comparable or smaller even than this. The reason for this is probably the fact

that many of the parameter settings are the same for these initial states. So the sets

of learnable languages for each are not going to be anywhere close to disjoint.

Of course, as the number of initial grammars is allowed to increase, the greater the

coverage of the whole space will be.

4.8 Convergence times

We ran the Matlab routine to find convergence times on various sizes of parameter

spaces. We also varied the precision to which the probability must converge. Recall

that the probability must reach a value of zero. We allowed the probability to come

close to zero within certain values. Those values were .01, .001, and .0001. As that

value gets smaller, the convergence time should dramatically increase.

Sometimes the probability never converged to something as small as we would have

liked, but it was still small enough to say that the learner was predicted to converge

on the target with very high probability. This was most likely the result of round-off

errors in Matlab. In these cases, we did not discard the language, but rather calculated

the number of examples required for convergence to that value. If the probability value

did not change with more than .0001 of the precision being investigated with another

iteration, then that value was returned as the convergence time.

The graph in Figure 4-1 below shows the rate of convergence for various parameter

spaces and various values of precision for convergence.
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Figure 4-1: Average convergence times for languages without local maxima in 3-8
parameter spaces for variying precisions.

We can see that the number of inputs is not increasing exponentially even though the

size of the space is. The numbers calculated here do seem reasonable for learnability.

With the eight parameter system and a precision of .0001, convergence took on average

fewer than 2500 input sentences. Of course this value would vary with a more realistic

distribution of inputs, but the value we calculated seems realistic for learnability.

With less precision, the convergence time is much smaller for this space. So if we

increase the number of parameters, it is still conceivable that the number of inputs

required for convergence would be reasonable since the curve is not exponential.
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Chapter 5

Conclusion

5.1 Conclusions

This implementation of Gibson and Wexler’s TLA helped us assess its strengths and

weaknesses.

The problem of local maxima is very real. This is especially true when we try to

make the spaces as realistic as possible by adding more and more parameters. The

more parameters we add, the more local maxima we find in a space. Only a very

small fraction of the languages in a given space have no local maxima at all.

The best results we found were the values of the scrambling parameters for initial

states. The TLA correctly predicted the superset/subset relation we expected. We

expected that we could not learn the subset setting of a parameter if the initial setting

is the superset setting of that parameter. This is exactly what we found. The best

initial values were the subset values and the worst initial values were the superset

values.

When we assumed the best initial state to cover as many of the languages as possible,
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we still ran into problems. It turned out that we could not even make the statement

that certain languages within a space are learnable and others are not. We found

that languages which were predicted unlearnable can actually be found in the world.

Varying this space slightly did not even help. It is doubtful that any more variance will

cause this problem to disappear. It may not always be languages like Swedish that are

predicted to be unlearnable. Chances are that some natural language will be since it

was typically about half of the possible language settings that were unlearnable from

any single starting state.

We saw that the convergence time seemed reasonable for spaces with up to eight

parameters. Since the convergence time was not increasing exponentially with the

number of parameters, even more parameters would seem realistic. Examining con-

vergence times showed that the TLA is plausible at least from this perspective.

5.2 Future Work

Here we will outline a few directions of possible future research. Some of these

involve looking at actual collected acquisition data. Another will involve investigating

parameter settings in attested languages. The last will allow for extension of the

system.

When we used Markov chains to find local maxima and convergence times, we needed

the probability of a certain input pattern. In this implementation, we assumed an

even distribution of input sentence patterns. So each input sentence pattern was

given the same probability. Certainly, these sentence patterns do not all have the

same probability of being heard by the learner.

We can approximate the probabilities of hearing each pattern by looking at actual

language being spoken to a child. The CHILDES corpus contains child language as

well as adult language being spoken to the child during recording sessions. The data
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in CHILDES is from many different languages, not just English.

If we could give each adult sentence in CHILDES a pattern corresponding to one

of the ones produced for the proper space, then we could count these and find an

approximate input distribution. These probabilities, paired with the appropriate

triggers, would allow us to create a more realistic Markov matrix. From there we can

find the local maxima and convergence times. This would be especially important

when we examine convergence times. Then we would be able to better judge whether

the calculated convergence time was realistic.

When we examined the languages which were (learnable and) unlearnable from a

particular initial setting of the parameters, we were able to identify languages that

had certain combinations of parameters. But there were other combinations which

seemed quite common that we could not associate with a particular language given

the set of classified languages that was given to us. It would be very helpful to try

find more languages with particular settings of parameters or to try to identify that

certain settings really do never exist together.

It would also be interesting to find how many initial settings would be needed to

cover the whole parameter space. We looked at how many languages can be safely

learned from two initial parameter settings. We found that the entire space could

not be covered from two grammars. Certainly it could be covered if we had all 4096

grammars, as Yang [Yan99] would suggest. But it would be worth investigating how

small a number of grammars would be necessary to cover the space and determining

what characterizes that set of initial grammars.

There is always room for expansion of the parameter set. We showed that it is easy

to extend the parameter set by adding three new parameters. We did not study the

spaces which included any of these, but it would be easy to do so if the computational

time were available.

Other extensions to the parameter space system might include allowing more sentence
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patterns other than the ones originally implemented. Since those would presumably

allow more triggers, they might help out somewhat with the problem of local maxima.

Another possibility for the sentence patterns is to allow embedded clauses. This would

allow more phenomena to show up and certain parameters might be more well-defined

with the addition embedded clause structures.
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Appendix A

Statistics on 12-parameter space

Languages with no maxima

> (lang-nomax) 188 langs have no maxes:

(0 0 0 1 0 0 0 1 1 0 1 0) (0 0 0 0 0 0 0 1 1 0 1 0) (0 0 0 1 0 0 1 1 1 0 1 0) (0 0 0 0 0 0 1 1 1 0 1 0)

(0 0 0 1 0 1 0 1 1 0 1 0) (0 0 0 0 0 1 0 1 1 0 1 0) (0 0 0 1 0 1 0 1 1 0 1 1) (0 0 0 1 0 0 0 1 1 0 1 1)

(0 0 0 0 0 1 0 1 1 0 1 1) (0 0 0 0 0 0 0 1 1 0 1 1) (0 0 0 1 0 1 1 1 1 0 1 1) (0 0 0 1 0 0 1 1 1 0 1 1)

(0 0 0 0 0 1 1 1 1 0 1 1) (0 0 0 0 0 0 1 1 1 0 1 1) (0 0 0 1 1 0 0 1 1 0 1 0) (0 0 0 0 1 0 0 1 1 0 1 0)

(0 0 0 1 1 1 0 1 1 0 1 0) (0 0 0 0 1 1 0 1 1 0 1 0) (0 0 0 1 1 1 0 1 1 0 1 1) (0 0 0 1 1 0 0 1 1 0 1 1)

(0 0 0 0 1 1 0 1 1 0 1 1) (0 0 0 0 1 0 0 1 1 0 1 1) (0 0 0 1 1 1 1 1 1 0 1 1) (0 0 0 1 1 0 1 1 1 0 1 1)

(0 0 0 0 1 1 1 1 1 0 1 1) (0 0 0 0 1 0 1 1 1 0 1 1) (0 0 1 1 0 0 0 1 1 0 1 0) (0 0 1 0 0 0 0 1 1 0 1 0)

(0 0 1 1 0 0 1 1 1 0 1 0) (0 0 1 0 0 0 1 1 1 0 1 0) (0 0 1 1 0 1 0 1 1 0 1 0) (0 0 1 0 0 1 0 1 1 0 1 0)

(0 0 1 1 0 1 0 1 1 0 1 1) (0 0 1 1 0 0 0 1 1 0 1 1) (0 0 1 0 0 1 0 1 1 0 1 1) (0 0 1 0 0 0 0 1 1 0 1 1)

(0 0 1 1 0 1 1 1 1 0 1 1) (0 0 1 1 0 0 1 1 1 0 1 1) (0 0 1 0 0 1 1 1 1 0 1 1) (0 0 1 0 0 0 1 1 1 0 1 1)

(0 0 1 1 1 0 0 1 1 0 1 0) (0 0 1 0 1 0 0 1 1 0 1 0) (0 0 1 1 1 1 0 1 1 0 1 0) (0 0 1 0 1 1 0 1 1 0 1 0)

(0 0 1 1 1 1 0 1 1 0 1 1) (0 0 1 1 1 0 0 1 1 0 1 1) (0 0 1 0 1 1 0 1 1 0 1 1) (0 0 1 0 1 0 0 1 1 0 1 1)

(0 0 1 1 1 1 1 1 1 0 1 1) (0 0 1 1 1 0 1 1 1 0 1 1) (0 0 1 0 1 1 1 1 1 0 1 1) (0 0 1 0 1 0 1 1 1 0 1 1)

(0 1 0 1 0 0 1 1 1 0 1 0) (0 1 0 1 0 0 0 1 1 0 1 0) (0 1 0 1 0 1 1 1 1 0 1 0) (0 1 0 1 0 1 0 1 1 0 1 0)

(0 1 0 1 0 1 1 1 1 0 1 1) (0 1 0 1 0 1 0 1 1 0 1 1) (0 1 0 1 0 0 1 1 1 0 1 1) (0 1 0 1 0 0 0 1 1 0 1 1)

(0 1 0 1 1 0 1 1 1 0 1 0) (0 1 0 1 1 0 0 1 1 0 1 0) (0 1 0 1 1 1 1 1 1 0 1 0) (0 1 0 1 1 1 0 1 1 0 1 0)

(0 1 0 1 1 1 1 1 1 0 1 1) (0 1 0 1 1 1 0 1 1 0 1 1) (0 1 0 1 1 0 1 1 1 0 1 1) (0 1 0 1 1 0 0 1 1 0 1 1)

(0 1 1 1 0 0 1 1 1 0 1 0) (0 1 1 1 0 0 0 1 1 0 1 0) (0 1 1 1 0 1 1 1 1 0 1 0) (0 1 1 1 0 1 0 1 1 0 1 0)

(0 1 1 1 0 1 1 1 1 0 1 1) (0 1 1 1 0 1 0 1 1 0 1 1) (0 1 1 1 0 0 1 1 1 0 1 1) (0 1 1 1 0 0 0 1 1 0 1 1)

(0 1 1 1 1 0 1 1 1 0 1 0) (0 1 1 1 1 0 0 1 1 0 1 0) (0 1 1 1 1 1 1 1 1 0 1 0) (0 1 1 1 1 1 0 1 1 0 1 0)

(0 1 1 1 1 1 1 1 1 0 1 1) (0 1 1 1 1 1 0 1 1 0 1 1) (0 1 1 1 1 0 1 1 1 0 1 1) (0 1 1 1 1 0 0 1 1 0 1 1)
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(1 0 0 0 0 0 0 1 1 0 1 0) (1 0 0 0 0 0 1 1 1 0 1 0) (1 0 0 0 0 1 0 1 1 0 1 0) (1 0 0 0 0 1 1 1 1 0 1 0)

(1 0 0 0 0 1 1 1 1 0 1 1) (1 0 0 0 0 0 1 1 1 0 1 1) (1 0 0 0 1 1 0 1 1 0 1 0) (1 0 0 0 1 0 0 1 1 0 1 0)

(1 0 0 0 1 1 1 1 1 0 1 0) (1 0 0 0 1 0 1 1 1 0 1 0) (1 0 0 0 1 1 1 1 1 0 1 1) (1 0 0 0 1 0 1 1 1 0 1 1)

(1 0 0 1 0 0 0 1 1 0 1 0) (1 0 0 1 0 0 1 1 1 0 1 0) (1 0 0 1 0 1 0 1 1 0 1 0) (1 0 0 1 0 1 0 1 1 0 1 1)

(1 0 0 1 0 0 0 1 1 0 1 1) (1 0 0 1 0 1 1 1 1 0 1 0) (1 0 0 1 0 1 1 1 1 0 1 1) (1 0 0 1 0 0 1 1 1 0 1 1)

(1 0 0 1 1 0 0 1 1 0 1 0) (1 0 0 1 1 0 1 1 1 0 1 0) (1 0 0 1 1 1 0 1 1 0 1 0) (1 0 0 1 1 1 0 1 1 0 1 1)

(1 0 0 1 1 0 0 1 1 0 1 1) (1 0 0 1 1 1 1 1 1 0 1 0) (1 0 0 1 1 1 1 1 1 0 1 1) (1 0 0 1 1 0 1 1 1 0 1 1)

(1 0 1 0 0 0 0 1 1 0 1 0) (1 0 1 0 0 0 1 1 1 0 1 0) (1 0 1 0 0 1 0 1 1 0 1 0) (1 0 1 0 0 1 1 1 1 0 1 0)

(1 0 1 0 0 1 1 1 1 0 1 1) (1 0 1 0 0 0 1 1 1 0 1 1) (1 0 1 0 1 1 0 1 1 0 1 0) (1 0 1 0 1 0 0 1 1 0 1 0)

(1 0 1 0 1 1 1 1 1 0 1 0) (1 0 1 0 1 0 1 1 1 0 1 0) (1 0 1 0 1 1 1 1 1 0 1 1) (1 0 1 0 1 0 1 1 1 0 1 1)

(1 0 1 1 0 0 0 1 1 0 1 0) (1 0 1 1 0 0 1 1 1 0 1 0) (1 0 1 1 0 1 0 1 1 0 1 0) (1 0 1 1 0 1 0 1 1 0 1 1)

(1 0 1 1 0 0 0 1 1 0 1 1) (1 0 1 1 0 1 1 1 1 0 1 0) (1 0 1 1 0 1 1 1 1 0 1 1) (1 0 1 1 0 0 1 1 1 0 1 1)

(1 0 1 1 1 0 0 1 1 0 1 0) (1 0 1 1 1 0 1 1 1 0 1 0) (1 0 1 1 1 1 0 1 1 0 1 0) (1 0 1 1 1 1 0 1 1 0 1 1)

(1 0 1 1 1 0 0 1 1 0 1 1) (1 0 1 1 1 1 1 1 1 0 1 0) (1 0 1 1 1 1 1 1 1 0 1 1) (1 0 1 1 1 0 1 1 1 0 1 1)

(1 1 0 1 0 0 0 1 1 0 1 0) (1 1 0 0 0 0 0 1 1 0 1 0) (1 1 0 1 0 0 1 1 1 0 1 0) (1 1 0 0 0 0 1 1 1 0 1 0)

(1 1 0 1 0 1 0 1 1 0 1 1) (1 1 0 1 0 0 0 1 1 0 1 1) (1 1 0 0 0 1 0 1 1 0 1 1) (1 1 0 0 0 0 0 1 1 0 1 1)

(1 1 0 1 0 1 1 1 1 0 1 1) (1 1 0 1 0 0 1 1 1 0 1 1) (1 1 0 0 0 1 1 1 1 0 1 1) (1 1 0 0 0 0 1 1 1 0 1 1)

(1 1 0 1 1 0 0 1 1 0 1 0) (1 1 0 0 1 0 0 1 1 0 1 0) (1 1 0 1 1 0 1 1 1 0 1 0) (1 1 0 0 1 0 1 1 1 0 1 0)

(1 1 0 1 1 1 0 1 1 0 1 1) (1 1 0 1 1 0 0 1 1 0 1 1) (1 1 0 0 1 1 0 1 1 0 1 1) (1 1 0 0 1 0 0 1 1 0 1 1)

(1 1 0 1 1 1 1 1 1 0 1 1) (1 1 0 1 1 0 1 1 1 0 1 1) (1 1 0 0 1 1 1 1 1 0 1 1) (1 1 0 0 1 0 1 1 1 0 1 1)

(1 1 1 1 0 0 0 1 1 0 1 0) (1 1 1 0 0 0 0 1 1 0 1 0) (1 1 1 1 0 0 1 1 1 0 1 0) (1 1 1 0 0 0 1 1 1 0 1 0)

(1 1 1 1 0 1 0 1 1 0 1 1) (1 1 1 1 0 0 0 1 1 0 1 1) (1 1 1 0 0 1 0 1 1 0 1 1) (1 1 1 0 0 0 0 1 1 0 1 1)

(1 1 1 1 0 1 1 1 1 0 1 1) (1 1 1 1 0 0 1 1 1 0 1 1) (1 1 1 0 0 1 1 1 1 0 1 1) (1 1 1 0 0 0 1 1 1 0 1 1)

(1 1 1 1 1 0 0 1 1 0 1 0) (1 1 1 0 1 0 0 1 1 0 1 0) (1 1 1 1 1 0 1 1 1 0 1 0) (1 1 1 0 1 0 1 1 1 0 1 0)

(1 1 1 1 1 1 0 1 1 0 1 1) (1 1 1 1 1 0 0 1 1 0 1 1) (1 1 1 0 1 1 0 1 1 0 1 1) (1 1 1 0 1 0 0 1 1 0 1 1)

(1 1 1 1 1 1 1 1 1 0 1 1) (1 1 1 1 1 0 1 1 1 0 1 1) (1 1 1 0 1 1 1 1 1 0 1 1) (1 1 1 0 1 0 1 1 1 0 1 1)
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Learnable languages with one parameter set

> (safe-ls-n-ps 1)

# targets w/ all settings of ((1 0)) being safe: 196

# targets w/ all settings of ((1 1)) being safe: 188

# targets w/ all settings of ((2 0)) being safe: 188

# targets w/ all settings of ((2 1)) being safe: 188

# targets w/ all settings of ((3 0)) being safe: 188

# targets w/ all settings of ((3 1)) being safe: 188

# targets w/ all settings of ((4 0)) being safe: 196

# targets w/ all settings of ((4 1)) being safe: 188

# targets w/ all settings of ((5 0)) being safe: 188

# targets w/ all settings of ((5 1)) being safe: 188

# targets w/ all settings of ((6 0)) being safe: 188

# targets w/ all settings of ((6 1)) being safe: 188

# targets w/ all settings of ((7 0)) being safe: 188

# targets w/ all settings of ((7 1)) being safe: 188

# targets w/ all settings of ((8 0)) being safe: 252

# targets w/ all settings of ((8 1)) being safe: 188

# targets w/ all settings of ((9 0)) being safe: 200

# targets w/ all settings of ((9 1)) being safe: 188

# targets w/ all settings of ((10 0)) being safe: 188

# targets w/ all settings of ((10 1)) being safe: 312

# targets w/ all settings of ((11 0)) being safe: 220

# targets w/ all settings of ((11 1)) being safe: 196

# targets w/ all settings of ((12 0)) being safe: 188

# targets w/ all settings of ((12 1)) being safe: 188
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Learnable languages with 12 parameters set

Table A.1: Best initial settings of 12 parameters (producing the highest number of
learnable languages)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 num learnable langs
0 1 1 0 0 1 1 0 0 1 0 1 1760
0 1 1 1 0 0 0 0 0 1 0 1 1700
0 1 1 0 0 0 1 0 0 1 0 1 1696
0 1 1 0 0 1 1 0 1 1 0 1 1632
1 0 0 1 0 0 0 0 0 1 0 1 1608
0 0 1 0 1 0 1 0 0 1 0 1 1602
0 1 1 0 0 0 1 0 1 1 0 1 1588
0 1 1 1 0 1 0 0 0 1 0 0 1586
0 1 1 0 1 1 1 0 0 1 0 1 1584
0 1 1 1 0 1 0 0 0 1 0 1 1572
0 1 0 1 0 1 0 0 0 1 0 1 1572
0 1 1 1 0 0 0 0 1 1 0 1 1556
0 1 1 1 1 0 0 0 0 1 0 1 1544
1 0 0 1 0 1 0 0 0 1 0 1 1542
0 1 1 1 1 1 0 0 0 1 0 0 1538
0 1 1 1 0 1 1 0 0 1 0 1 1536
1 0 0 0 1 0 1 0 0 1 0 1 1518
1 0 0 0 1 0 1 0 0 1 0 0 1502
0 0 1 0 1 0 1 0 0 1 0 0 1502
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Table A.2: Worst initial settings of 12 parameters (producing the least number of
learnable languages)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 num learnable langs
1 1 0 1 0 1 1 1 1 0 1 0 204
1 1 0 1 0 1 1 1 1 0 1 1 204
1 1 0 1 1 1 1 1 1 0 1 0 204
1 1 0 1 1 1 1 1 1 0 1 1 204
1 1 1 1 0 1 1 1 1 0 1 0 204
1 1 1 1 0 1 1 1 1 0 1 1 204
1 1 1 1 1 1 1 1 1 0 1 0 204
1 1 1 1 1 1 1 1 1 0 1 1 204
1 1 0 1 1 0 0 1 1 0 1 1 208
1 1 1 1 1 0 0 1 1 0 1 0 208
1 1 1 1 1 0 0 1 1 0 1 1 208
0 0 0 1 0 1 0 1 1 0 1 0 212
0 0 0 1 1 1 0 1 1 0 1 0 212
0 0 1 1 0 1 0 1 1 0 1 0 212
0 0 1 1 1 1 0 1 1 0 1 0 212
1 1 0 1 0 0 0 1 1 0 1 1 212
1 1 0 1 0 0 1 1 1 0 1 1 212
1 1 0 1 0 1 0 1 1 0 1 1 212
1 1 0 1 1 0 1 1 1 0 1 1 212
1 1 0 1 1 1 0 1 1 0 1 1 212
1 1 1 1 0 0 0 1 1 0 1 0 212
1 1 1 1 0 0 0 1 1 0 1 1 212
1 1 1 1 0 0 1 1 1 0 1 0 212
1 1 1 1 0 0 1 1 1 0 1 1 212
1 1 1 1 0 1 0 1 1 0 1 1 212
1 1 1 1 1 0 1 1 1 0 1 0 212
1 1 1 1 1 0 1 1 1 0 1 1 212
1 1 1 1 1 1 0 1 1 0 1 1 212
1 1 0 1 1 0 0 1 1 0 1 0 214
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Appendix B

Statistics on 11-parameter space

Languages with no maxima

> (lang-nomax)

112 langs have no maxes:

(0 0 0 0 0 0 1 1 0 1 0) (0 0 0 0 0 1 1 1 0 1 0) (0 0 0 0 1 0 1 1 0 1 0) (0 0 0 0 1 1 1 1 0 1 0)

(0 0 0 0 1 1 1 1 0 1 1) (0 0 0 0 0 1 1 1 0 1 1) (0 0 0 1 1 0 1 1 0 1 0) (0 0 0 1 0 0 1 1 0 1 0)

(0 0 0 1 1 1 1 1 0 1 0) (0 0 0 1 0 1 1 1 0 1 0) (0 0 0 1 1 1 1 1 0 1 1) (0 0 0 1 0 1 1 1 0 1 1)

(0 0 1 0 0 0 1 1 0 1 0) (0 0 1 0 0 1 1 1 0 1 0) (0 0 1 0 1 0 1 1 0 1 0) (0 0 1 0 1 1 1 1 0 1 0)

(0 0 1 0 1 1 1 1 0 1 1) (0 0 1 0 0 1 1 1 0 1 1) (0 0 1 1 0 0 1 1 0 1 0) (0 0 1 1 0 1 1 1 0 1 0)

(0 0 1 1 1 0 1 1 0 1 0) (0 0 1 1 1 1 1 1 0 1 0) (0 0 1 1 1 1 1 1 0 1 1) (0 0 1 1 0 1 1 1 0 1 1)

(0 1 0 0 0 0 1 1 0 1 0) (0 1 0 0 0 1 1 1 0 1 0) (0 1 0 0 1 0 1 1 0 1 0) (0 1 0 0 1 1 1 1 0 1 0)

(0 1 0 0 1 1 1 1 0 1 1) (0 1 0 0 0 1 1 1 0 1 1) (0 1 0 1 1 0 1 1 0 1 0) (0 1 0 1 0 0 1 1 0 1 0)

(0 1 0 1 1 1 1 1 0 1 0) (0 1 0 1 0 1 1 1 0 1 0) (0 1 0 1 1 1 1 1 0 1 1) (0 1 0 1 0 1 1 1 0 1 1)

(0 1 1 0 0 0 1 1 0 1 0) (0 1 1 0 0 1 1 1 0 1 0) (0 1 1 0 1 0 1 1 0 1 0) (0 1 1 0 1 1 1 1 0 1 0)

(0 1 1 0 1 1 1 1 0 1 1) (0 1 1 0 0 1 1 1 0 1 1) (0 1 1 1 0 0 1 1 0 1 0) (0 1 1 1 0 1 1 1 0 1 0)

(0 1 1 1 1 0 1 1 0 1 0) (0 1 1 1 1 1 1 1 0 1 0) (0 1 1 1 1 1 1 1 0 1 1) (0 1 1 1 0 1 1 1 0 1 1)

(1 0 1 0 0 0 1 1 0 1 0) (1 0 0 0 0 0 1 1 0 1 0) (1 0 1 0 0 1 1 1 0 1 0) (1 0 0 0 0 1 1 1 0 1 0)

(1 0 1 0 1 0 1 1 0 1 0) (1 0 0 0 1 0 1 1 0 1 0) (1 0 1 0 1 0 1 1 0 1 1) (1 0 1 0 0 0 1 1 0 1 1)

(1 0 0 0 1 0 1 1 0 1 1) (1 0 0 0 0 0 1 1 0 1 1) (1 0 1 0 1 1 1 1 0 1 0) (1 0 0 0 1 1 1 1 0 1 0)

(1 0 1 0 1 1 1 1 0 1 1) (1 0 1 0 0 1 1 1 0 1 1) (1 0 0 0 1 1 1 1 0 1 1) (1 0 0 0 0 1 1 1 0 1 1)

(1 0 1 1 0 0 1 1 0 1 0) (1 0 0 1 0 0 1 1 0 1 0) (1 0 1 1 0 1 1 1 0 1 0) (1 0 0 1 0 1 1 1 0 1 0)

(1 0 1 1 1 0 1 1 0 1 0) (1 0 0 1 1 0 1 1 0 1 0) (1 0 1 1 1 0 1 1 0 1 1) (1 0 1 1 0 0 1 1 0 1 1)

(1 0 0 1 1 0 1 1 0 1 1) (1 0 0 1 0 0 1 1 0 1 1) (1 0 1 1 1 1 1 1 0 1 0) (1 0 0 1 1 1 1 1 0 1 0)

(1 0 1 1 1 1 1 1 0 1 1) (1 0 1 1 0 1 1 1 0 1 1) (1 0 0 1 1 1 1 1 0 1 1) (1 0 0 1 0 1 1 1 0 1 1)
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(1 1 1 0 0 0 1 1 0 1 0) (1 1 0 0 0 0 1 1 0 1 0) (1 1 1 0 0 1 1 1 0 1 0) (1 1 0 0 0 1 1 1 0 1 0)

(1 1 1 0 1 0 1 1 0 1 0) (1 1 0 0 1 0 1 1 0 1 0) (1 1 1 0 1 0 1 1 0 1 1) (1 1 1 0 0 0 1 1 0 1 1)

(1 1 0 0 1 0 1 1 0 1 1) (1 1 0 0 0 0 1 1 0 1 1) (1 1 1 0 1 1 1 1 0 1 0) (1 1 0 0 1 1 1 1 0 1 0)

(1 1 1 0 1 1 1 1 0 1 1) (1 1 1 0 0 1 1 1 0 1 1) (1 1 0 0 1 1 1 1 0 1 1) (1 1 0 0 0 1 1 1 0 1 1)

(1 1 1 1 0 0 1 1 0 1 0) (1 1 0 1 0 0 1 1 0 1 0) (1 1 1 1 0 1 1 1 0 1 0) (1 1 0 1 0 1 1 1 0 1 0)

(1 1 1 1 1 0 1 1 0 1 0) (1 1 0 1 1 0 1 1 0 1 0) (1 1 1 1 1 0 1 1 0 1 1) (1 1 1 1 0 0 1 1 0 1 1)

(1 1 0 1 1 0 1 1 0 1 1) (1 1 0 1 0 0 1 1 0 1 1) (1 1 1 1 1 1 1 1 0 1 0) (1 1 0 1 1 1 1 1 0 1 0)

(1 1 1 1 1 1 1 1 0 1 1) (1 1 1 1 0 1 1 1 0 1 1) (1 1 0 1 1 1 1 1 0 1 1) (1 1 0 1 0 1 1 1 0 1 1)

72



Learnable languages with one parameter set

> (safe-ls-n-ps 1)

# targets w/ all settings of ((2 0)) being safe: 112

# targets w/ all settings of ((2 1)) being safe: 112

# targets w/ all settings of ((3 0)) being safe: 112

# targets w/ all settings of ((3 1)) being safe: 112

# targets w/ all settings of ((4 0)) being safe: 120

# targets w/ all settings of ((4 1)) being safe: 112

# targets w/ all settings of ((5 0)) being safe: 112

# targets w/ all settings of ((5 1)) being safe: 112

# targets w/ all settings of ((6 0)) being safe: 112

# targets w/ all settings of ((6 1)) being safe: 112

# targets w/ all settings of ((7 0)) being safe: 112

# targets w/ all settings of ((7 1)) being safe: 112

# targets w/ all settings of ((8 0)) being safe: 368

# targets w/ all settings of ((8 1)) being safe: 112

# targets w/ all settings of ((9 0)) being safe: 144

# targets w/ all settings of ((9 1)) being safe: 112

# targets w/ all settings of ((10 0)) being safe: 112

# targets w/ all settings of ((10 1)) being safe: 160

# targets w/ all settings of ((11 0)) being safe: 152

# targets w/ all settings of ((11 1)) being safe: 128

# targets w/ all settings of ((12 0)) being safe: 112

# targets w/ all settings of ((12 1)) being safe: 112
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Learnable languages with 11 parameters set

Table B.1: Best initial settings of 11 parameters (producing the highest number of
learnable languages)

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 num learnable langs
0 0 1 0 0 0 0 0 1 0 1 1384
0 0 1 0 1 0 0 0 1 0 1 1294
0 0 1 1 0 0 0 0 1 0 1 1250
1 0 0 0 0 0 0 0 1 0 1 1208
0 0 1 0 0 0 0 1 1 0 1 1206
1 0 1 0 0 0 0 0 1 0 1 1188
0 0 1 0 0 0 0 0 0 0 1 1186
0 0 1 0 0 0 0 0 1 1 1 1182
0 0 1 1 1 0 0 0 1 0 1 1154
0 0 1 0 1 0 0 1 1 0 1 1128
1 0 0 1 0 0 0 0 1 0 1 1128
0 0 1 0 1 0 0 0 1 1 1 1118
0 0 1 0 1 0 0 0 0 0 1 1116
0 1 1 0 0 0 0 0 1 0 1 1112
0 0 1 0 0 0 0 1 0 0 1 1110
1 0 1 1 0 0 0 0 1 0 1 1108
0 0 1 0 0 0 0 1 1 1 1 1088
1 0 0 0 1 0 0 0 1 0 1 1088
1 0 0 0 1 1 0 0 1 0 1 1088
1 1 0 0 1 0 0 0 1 0 1 1088
0 0 1 1 0 0 0 1 1 0 1 1076
0 0 0 1 0 0 0 0 1 0 1 1072
1 0 0 1 1 0 0 0 1 0 1 1072
1 1 0 1 1 0 0 0 1 0 1 1072
0 0 0 0 0 0 0 0 1 0 1 1064
0 0 1 1 0 0 0 0 0 0 1 1064
0 0 1 0 0 0 0 0 0 1 1 1062
0 0 1 1 0 0 0 0 1 1 1 1052
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Table B.2: Worst initial settings of 11 parameters (producing the least number of
learnable languages)

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 num learnable langs
0 0 0 0 0 0 1 1 0 1 0 128
0 0 0 0 0 0 1 1 0 1 1 128
0 0 0 0 0 1 1 1 0 1 0 128
0 0 0 0 0 1 1 1 0 1 1 128
0 0 0 0 1 0 1 1 0 1 0 128
0 0 0 0 1 0 1 1 0 1 1 128
0 0 0 0 1 1 1 1 0 1 0 128
0 0 0 0 1 1 1 1 0 1 1 128
0 0 0 1 0 0 1 1 0 1 0 128
0 0 0 1 0 0 1 1 0 1 1 128
0 0 0 1 0 1 1 1 0 1 0 128
0 0 0 1 0 1 1 1 0 1 1 128
0 0 0 1 1 0 1 1 0 1 0 128
0 0 0 1 1 0 1 1 0 1 1 128
0 0 0 1 1 1 1 1 0 1 0 128
0 0 0 1 1 1 1 1 0 1 1 128
0 0 1 0 0 0 1 1 0 1 0 128
0 0 1 0 0 0 1 1 0 1 1 128
0 0 1 0 0 1 1 1 0 1 0 128
0 0 1 0 0 1 1 1 0 1 1 128
0 0 1 0 1 0 1 1 0 1 0 128
0 0 1 0 1 0 1 1 0 1 1 128
0 0 1 0 1 1 1 1 0 1 0 128
0 0 1 0 1 1 1 1 0 1 1 128
0 0 1 1 0 0 1 1 0 1 0 128
0 0 1 1 0 0 1 1 0 1 1 128
0 0 1 1 0 1 1 1 0 1 0 128
0 0 1 1 0 1 1 1 0 1 1 128
0 0 1 1 1 0 1 1 0 1 0 128
0 0 1 1 1 0 1 1 0 1 1 128
0 0 1 1 1 1 1 1 0 1 0 128
0 0 1 1 1 1 1 1 0 1 1 128

75



Table B.3: Worst initial settings of 11 parameters (continued)

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 num learnable langs
0 1 0 0 0 0 1 1 0 1 0 128
0 1 0 0 0 0 1 1 0 1 1 128
0 1 0 0 0 1 1 1 0 1 0 128
0 1 0 0 0 1 1 1 0 1 1 128
0 1 0 0 1 0 1 1 0 1 0 128
0 1 0 0 1 0 1 1 0 1 1 128
0 1 0 0 1 1 1 1 0 1 0 128
0 1 0 0 1 1 1 1 0 1 1 128
0 1 0 1 0 0 1 1 0 1 0 128
0 1 0 1 0 0 1 1 0 1 1 128
0 1 0 1 0 1 1 1 0 1 0 128
0 1 0 1 0 1 1 1 0 1 1 128
0 1 0 1 1 0 1 1 0 1 0 128
0 1 0 1 1 0 1 1 0 1 1 128
0 1 0 1 1 1 1 1 0 1 0 128
0 1 0 1 1 1 1 1 0 1 1 128
0 1 1 0 0 0 1 1 0 1 0 128
0 1 1 0 0 0 1 1 0 1 1 128
0 1 1 0 0 1 1 1 0 1 0 128
0 1 1 0 0 1 1 1 0 1 1 128
0 1 1 0 1 0 1 1 0 1 0 128
0 1 1 0 1 0 1 1 0 1 1 128
0 1 1 0 1 1 1 1 0 1 0 128
0 1 1 0 1 1 1 1 0 1 1 128
0 1 1 1 0 0 1 1 0 1 0 128
0 1 1 1 0 0 1 1 0 1 1 128
0 1 1 1 0 1 1 1 0 1 0 128
0 1 1 1 0 1 1 1 0 1 1 128
0 1 1 1 1 0 1 1 0 1 0 128
0 1 1 1 1 0 1 1 0 1 1 128
0 1 1 1 1 1 1 1 0 1 0 128
0 1 1 1 1 1 1 1 0 1 1 128
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Table B.4: Worst initial settings of 11 parameters (continued)

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 num learnable langs
1 0 0 0 0 0 1 1 0 1 0 128
1 0 0 0 0 0 1 1 0 1 1 128
1 0 0 0 0 1 1 1 0 1 0 128
1 0 0 0 0 1 1 1 0 1 1 128
1 0 0 0 1 0 1 1 0 1 0 128
1 0 0 0 1 0 1 1 0 1 1 128
1 0 0 0 1 1 1 1 0 1 0 128
1 0 0 0 1 1 1 1 0 1 1 128
1 0 0 1 0 0 1 1 0 1 0 128
1 0 0 1 0 0 1 1 0 1 1 128
1 0 0 1 0 1 1 1 0 1 0 128
1 0 0 1 0 1 1 1 0 1 1 128
1 0 0 1 1 0 1 1 0 1 0 128
1 0 0 1 1 0 1 1 0 1 1 128
1 0 0 1 1 1 1 1 0 1 0 128
1 0 0 1 1 1 1 1 0 1 1 128
1 0 1 0 0 0 1 1 0 1 0 128
1 0 1 0 0 0 1 1 0 1 1 128
1 0 1 0 0 1 1 1 0 1 0 128
1 0 1 0 0 1 1 1 0 1 1 128
1 0 1 0 1 0 1 1 0 1 0 128
1 0 1 0 1 0 1 1 0 1 1 128
1 0 1 0 1 1 1 1 0 1 0 128
1 0 1 0 1 1 1 1 0 1 1 128
1 0 1 1 0 0 1 1 0 1 0 128
1 0 1 1 0 0 1 1 0 1 1 128
1 0 1 1 0 1 1 1 0 1 0 128
1 0 1 1 0 1 1 1 0 1 1 128
1 0 1 1 1 0 1 1 0 1 0 128
1 0 1 1 1 0 1 1 0 1 1 128
1 0 1 1 1 1 1 1 0 1 0 128
1 0 1 1 1 1 1 1 0 1 1 128
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Table B.5: Worst initial settings of 11 parameters (continued)

P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 num learnable langs
1 1 0 0 0 0 1 1 0 1 0 128
1 1 0 0 0 0 1 1 0 1 1 128
1 1 0 0 0 1 1 1 0 1 0 128
1 1 0 0 0 1 1 1 0 1 1 128
1 1 0 0 1 0 1 1 0 1 0 128
1 1 0 0 1 0 1 1 0 1 1 128
1 1 0 0 1 1 1 1 0 1 0 128
1 1 0 0 1 1 1 1 0 1 1 128
1 1 0 1 0 0 1 1 0 1 0 128
1 1 0 1 0 0 1 1 0 1 1 128
1 1 0 1 0 1 1 1 0 1 0 128
1 1 0 1 0 1 1 1 0 1 1 128
1 1 0 1 1 0 1 1 0 1 0 128
1 1 0 1 1 0 1 1 0 1 1 128
1 1 0 1 1 1 1 1 0 1 0 128
1 1 0 1 1 1 1 1 0 1 1 128
1 1 1 0 0 0 1 1 0 1 0 128
1 1 1 0 0 0 1 1 0 1 1 128
1 1 1 0 0 1 1 1 0 1 0 128
1 1 1 0 0 1 1 1 0 1 1 128
1 1 1 0 1 0 1 1 0 1 0 128
1 1 1 0 1 0 1 1 0 1 1 128
1 1 1 0 1 1 1 1 0 1 0 128
1 1 1 0 1 1 1 1 0 1 1 128
1 1 1 1 0 0 1 1 0 1 0 128
1 1 1 1 0 0 1 1 0 1 1 128
1 1 1 1 0 1 1 1 0 1 0 128
1 1 1 1 0 1 1 1 0 1 1 128
1 1 1 1 1 0 1 1 0 1 0 128
1 1 1 1 1 0 1 1 0 1 1 128
1 1 1 1 1 1 1 1 0 1 0 128
1 1 1 1 1 1 1 1 0 1 1 128
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